Production of 2-butanol through meso-2,3-butanediol consumption in lactic acid bacteria.

نویسندگان

  • Payam Ghiaci
  • Francisca Lameiras
  • Joakim Norbeck
  • Christer Larsson
چکیده

2-Butanol has been an issue of industries in many areas, for example, biofuel production (as an advanced alternate fuel), fermented beverages, and food (as taste-altering component). Thus, its source of production, the biological pathway, and the enzymes involved are of high interest. In this study, 42 different isolates of lactic acid bacteria from nine different species were screened for their capability to consume meso-2,3-butanediol and produce 2-butanol. Lactobacillus brevis was the only species that showed any production of 2-butanol. Five of ten tested isolates of L. brevis were able to convert meso-2,3-butanediol to 2-butanol in a synthetic medium (SM2). However, none of them showed the same capability in a complex medium such as MRS indicating that the ability to produce 2-butanol is subject to some kind of repression mechanism. Furthermore, by evaluating the performance of the enzymes required to convert meso-2,3-butanediol to 2-butanol, that is, the secondary alcohol dehydrogenase and the diol dehydratase, it was shown that the latter needed the presence of a substrate to be expressed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D-2,3-butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum.

Acetoin reductase (ACR) catalyzes the conversion of acetoin to 2,3-butanediol. Under certain conditions, Clostridium acetobutylicum ATCC 824 (and strains derived from it) generates both d- and l-stereoisomers of acetoin, but because of the absence of an ACR enzyme, it does not produce 2,3-butanediol. A gene encoding ACR from Clostridium beijerinckii NCIMB 8052 was functionally expressed in C. a...

متن کامل

Engineering Acetoin and meso-2,3-Butanediol Biosynthesis in E. coli

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 The functional reconstruction of acetoin and meso-2,3-butanediol biosynthetic pathways in E. coli have been systematically explored. Pathway construction involved the in vivo screening of prospective pathway isozymes of yeast and bacterial origin. After substantial engineering of the host background to increase pyruvate availability, E. coli YY...

متن کامل

Combining microbial production with chemical upgrading.

This review presents developments in the chemical processing of fermentation-derived compounds, focusing on ethanol, lactic acid, 2,3-butanediol and the acetone-butanol-ethanol mixture. We examine pathways from these products to biologically-derived drop-in fuels, polymers, as well as commodity chemicals, highlighting the role of homogeneous and heterogeneous catalysts in the development of gre...

متن کامل

Efficient (3S)-Acetoin and (2S,3S)-2,3-Butanediol Production from meso-2,3-Butanediol Using Whole-Cell Biocatalysis.

(3S)-Acetoin and (2S,3S)-2,3-butanediol are important platform chemicals widely applied in the asymmetric synthesis of valuable chiral chemicals. However, their production by fermentative methods is difficult to perform. This study aimed to develop a whole-cell biocatalysis strategy for the production of (3S)-acetoin and (2S,3S)-2,3-butanediol from meso-2,3-butanediol. First, E. coli co-express...

متن کامل

Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis

BACKGROUND D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optical purity. Bacillus licheniformis is a potential 2,3-butanediol producer but ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEMS microbiology letters

دوره 360 1  شماره 

صفحات  -

تاریخ انتشار 2014