Production of 2-butanol through meso-2,3-butanediol consumption in lactic acid bacteria.
نویسندگان
چکیده
2-Butanol has been an issue of industries in many areas, for example, biofuel production (as an advanced alternate fuel), fermented beverages, and food (as taste-altering component). Thus, its source of production, the biological pathway, and the enzymes involved are of high interest. In this study, 42 different isolates of lactic acid bacteria from nine different species were screened for their capability to consume meso-2,3-butanediol and produce 2-butanol. Lactobacillus brevis was the only species that showed any production of 2-butanol. Five of ten tested isolates of L. brevis were able to convert meso-2,3-butanediol to 2-butanol in a synthetic medium (SM2). However, none of them showed the same capability in a complex medium such as MRS indicating that the ability to produce 2-butanol is subject to some kind of repression mechanism. Furthermore, by evaluating the performance of the enzymes required to convert meso-2,3-butanediol to 2-butanol, that is, the secondary alcohol dehydrogenase and the diol dehydratase, it was shown that the latter needed the presence of a substrate to be expressed.
منابع مشابه
D-2,3-butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum.
Acetoin reductase (ACR) catalyzes the conversion of acetoin to 2,3-butanediol. Under certain conditions, Clostridium acetobutylicum ATCC 824 (and strains derived from it) generates both d- and l-stereoisomers of acetoin, but because of the absence of an ACR enzyme, it does not produce 2,3-butanediol. A gene encoding ACR from Clostridium beijerinckii NCIMB 8052 was functionally expressed in C. a...
متن کاملEngineering Acetoin and meso-2,3-Butanediol Biosynthesis in E. coli
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 The functional reconstruction of acetoin and meso-2,3-butanediol biosynthetic pathways in E. coli have been systematically explored. Pathway construction involved the in vivo screening of prospective pathway isozymes of yeast and bacterial origin. After substantial engineering of the host background to increase pyruvate availability, E. coli YY...
متن کاملCombining microbial production with chemical upgrading.
This review presents developments in the chemical processing of fermentation-derived compounds, focusing on ethanol, lactic acid, 2,3-butanediol and the acetone-butanol-ethanol mixture. We examine pathways from these products to biologically-derived drop-in fuels, polymers, as well as commodity chemicals, highlighting the role of homogeneous and heterogeneous catalysts in the development of gre...
متن کاملEfficient (3S)-Acetoin and (2S,3S)-2,3-Butanediol Production from meso-2,3-Butanediol Using Whole-Cell Biocatalysis.
(3S)-Acetoin and (2S,3S)-2,3-butanediol are important platform chemicals widely applied in the asymmetric synthesis of valuable chiral chemicals. However, their production by fermentative methods is difficult to perform. This study aimed to develop a whole-cell biocatalysis strategy for the production of (3S)-acetoin and (2S,3S)-2,3-butanediol from meso-2,3-butanediol. First, E. coli co-express...
متن کاملDeletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis
BACKGROUND D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optical purity. Bacillus licheniformis is a potential 2,3-butanediol producer but ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEMS microbiology letters
دوره 360 1 شماره
صفحات -
تاریخ انتشار 2014